ഏപ്രിൽ -25 ഡി എൻ എ ദിനം

0

 

Although DNA Day was made into an official observance by the U.S. Congress, it is the NGHRI (National Human Genome Research Institute) who seem to organize events and speakers to go into halls and speak to both students and the general public who wish to find out more about DNA.

The day commemorates the 50 year anniversary of James Watson and Francis Crick’s discovery (and published article) of the Double Helix, as well as the completion of the Genome Project which took 13 years to complete.

The Human Genome Project was completed in April 2003 and this day is to honor that, as well as the discovery of the Double Helix.
________________________________

*ഡി.എൻ.എ*

______________________________

എല്ലാ ജീവജാലങ്ങളുടെയും (അർഎൻഎ വൈറസുകൾ ഒഴികെ) വളർച്ചയും ഘടനയും പ്രവർത്തനങ്ങളും ഉൾപ്പെടെയുള്ള ജനിതക വിവരങ്ങൾ എഴുതപ്പെട്ടിരിക്കുന്ന ഒരു ന്യൂക്ലിക് അമ്ലമാണ് ഡിയോക്സിറൈബോന്യുക്ലിക്ക് ആസിഡ്, അതായത് ഡിഎൻഎ. ജനിതക വിവരങ്ങൾ ദീർഘകാലത്തേക്ക് സൂക്ഷിക്കുക എന്നതാണ് ഡിഎൻഎയുടെ പ്രധാന ദൗത്യം.ഇവ രണ്ട് തരമുണ്ട്, “ഡി ഓക്സിറൈബോന്യൂക്ളിക് ആസിഡും, റൈബോന്യൂക്ളിക് ആസിഡും”. ചുറ്റുഗോവണിയുടെ രൂപമാണ് ഡി ഓക്സിറൈബോന്യൂക്ളിക് ആസിഡിന്. ഇതിനെ വാട്സൻ ആന്റ് ക്രീക്ക് മോഡൽ എന്നു പറയുന്നു. ഇത് കണ്ടു പിടിച്ചത് 1953 ലാണ്.

ഡി.എൻ.എ.
ജീവന്റെ ചുരുളുകൾ എന്നറിയപ്പെടുന്ന ഡി.എൻ.എ.ജീനുകൾ, ഡി.എൻ.എ ഖണ്ഡങ്ങളായിട്ടാണ് പാരമ്പര്യസ്വഭാവങ്ങൾ കൈമാറുന്നത്.ഒരു ജീവിയിൽ നിന്നും മറ്റൊന്നിലേയ്ക്ക് ജീനുകൾ പറിച്ചുനട്ട് പുതിയ ജീവിവർഗ്ഗങ്ങൾ ശാസ്ത്രലോകം സൃഷ്ടിയ്ക്കുന്നു.ആധുനികതന്മാത്രാ ജീവശാസ്ത്രത്തിന്റെ വളർച്ചയുടെ അടിസ്ഥാനം ഡി.എൻ.എയുടെ കണ്ടുപിടിത്തമാണ്.ജനിതക കോഡും മാംസ്യവിശ്ലേഷണത്തിന്റെ രഹസ്യവുമെല്ലാം തുടർന്നാണ് കണ്ടെത്തിയത്.

ഡി.എൻ.എ—ആർ.എൻ.എ
സ്വഭാവസവിശേഷതകൾ രൂപപ്പെടുത്തുന്നതും ഉപാപചയപ്രവർത്തനങ്ങളെ നിയന്ത്രിക്കുന്നതും പ്രോട്ടീനുകളാണ്.ഏതുതരം പ്രോട്ടീനുകൾ നിർമ്മിക്കണമെന്ന് തീരുമാനിക്കുന്നത് ഡി.എൻ.എ.യിലെ ജീനുകളാണ്.ഡി.എൻ.എ നേരിട്ട് പ്രേട്ടീൻ നിർമ്മിക്കുന്നില്ല. ഡി.എൻ.എ സ്വന്തം ഇഴകളിൽ നിന്ന് ആർ.എൻ.എ നിർമ്മിക്കുന്നു.ആർ.എൻ.എ റൈബോസോമുകളിലെത്തി അമിനോആസിഡുമായി കൂട്ടിച്ചേർത്ത് പ്രോട്ടീൻ നിർമ്മിക്കുന്നു.ഓരോ ജീനിലും നിശ്ചിത പ്രോട്ടീനുകളുടെ നിർമ്മാണത്തിനുള്ള വിവരങ്ങൾ ഉൾപ്പെട്ടിരിക്കുന്നു,

മനുഷ്യ ഡി.എൻ.എ
2006ൽ ആണ് മനുഷ്യ ഡി.എൻ.എയുടെ സവിശേഷതകൾ പൂർണ്ണമായും ഗവേഷകർക്ക് തിരിച്ചറിയാനായത്.കോശത്തിലെ മർമ്മത്തിനുള്ളിൽ 23ജോഡി ക്രോമസോമുകൾ ഉണ്ട്.ഒന്നാമത്തെ ക്രോമസോം ഏറ്റവും വലുതും 22ആമത്തെ ഏറ്റവും ചെറുതാണെന്നും തിരിച്ചറിഞ്ഞു.അപകോഡീകരിയ്ക്കാൻ ബാക്കിയുണ്ടായിരുന്ന ക്രോമസോം ഒന്നിനെ ഇക്കാലത്താണ് വായിച്ചെടുത്തത്.

ഡി.എൻ.എയിലടങ്ങിയിരിയ്ക്കുന്ന പൂർണ്ണജനിതകസാരത്തേയാണ് മാനവ ജിനോം എന്ന് പറയുന്നത്.ക്രോമസോം1 ഈ ജിനോമിന്റെ ഏകദേശം 8%ത്തോളം വരും. പാർക്കിൻസൺസ്, അൽഷൈമേഴ്സ് തുടങ്ങിയ രോഗങ്ങളുമായി ബന്ധപ്പെട്ട ജീനുകൾ ഈ ക്രോമസോമിലാണുള്ളത്. പ്രസ്തുത വിഷയത്തിലുണ്ടായ ഗവേഷണങ്ങൾ നിയാൻഡർത്താൽ മനുഷ്യന്റെ ജനിതകരഹസ്യം കണ്ടെത്തുന്നതിലും സഹായകമായി.

*ഘടന*

ഡി എൻ എയുടെ തന്മാത്രകൾ ദൈർഘ്യമേറിയ പോളിമറുകളുടെ രൂപത്തിലുള്ളവയാണ്. ഇവയെല്ലാം തന്നെ ഡി ഓക്സീറൈബോ ന്യൂക്ലിയോറ്റൈഡുകളുടെ ആവർത്തിത ഏകകങ്ങളാലാണ് നിർമ്മിക്കപ്പെട്ടിട്ടുള്ളത്. ഓരോ ഏകകവും ഒരു ഷുഗർ (2-ഡി ഓക്സിറൈബോസ്), ഫോസ്ഫേറ്റ്, ഒരു പ്യൂരിൻ അഥവാ പിരിമിഡിൻ ബേസ് എന്നിവ ഉൾക്കൊള്ളുന്നു. ഡിഓക്സിറൈബോ ന്യൂക്ലിയോറ്റൈഡ് ഏകകങ്ങൾ എല്ലാം തന്നെ ഫോസ്ഫേറ്റ് ഗ്രൂപ്പുകളാൽ പരസ്പരം ബന്ധിതമായിരിക്കുന്നു. ഒന്നിടവിട്ടുള്ള ഷുഗർ ഫോസ്ഫേറ്റ് അവശേഷങ്ങൾ (residues) ആണ് തന്മാത്രയുടെ നട്ടെല്ലായി വർത്തിക്കുന്നത്. പ്യൂരിൻ, പിരിമിഡിൻ ബേസുകൾ ഈ നട്ടെല്ലിനോട് ഡിഓക്സിറൈബോസ് വഴി ഘടിപ്പിക്കപ്പെട്ടിരിക്കുന്നു. എല്ലാ ഡി എൻ എ തന്മാത്രകളിലും ഈ നട്ടെല്ല് ഒരേ സ്വഭാവം പ്രദർശിപ്പിക്കുന്നതാണ്. പ്യൂരിൻ, പിരിമിഡിൻ ബേസുകളുടെ അനുക്രമമാണ് ഓരോ ഡി എൻ എയ്ക്കും അതതിന്റെ വ്യക്തിത്വം പ്രദാനം ചെയ്യുന്നത്.

വലംകയ്യൻ ഹെലിക്സ്
മിക്ക ഡി എൻ എ തന്മാത്രകൾക്കും ഇരട്ടപ്പിരിരൂപമാണുള്ളത്. തമ്മിൽ ചുറ്റിപ്പിണഞ്ഞ രണ്ട് ഡി എൻ എ ചങ്ങലകളാണ് ഇവയിലുള്ളത്. ഈ ചങ്ങലകൾ രണ്ടും സമാന്തരവിരുദ്ധമായി എതിർ ദിശകളിലേക്കാണ് ഘടിപ്പിക്കപ്പെട്ടിട്ടുള്ളതെന്നും പറയാം. ഇതിന്റെ ഘടന ഒരു വലംകയ്യൻ ഹെലിക്സിന്റെ രൂപത്തിലാണ്. രണ്ടു ചങ്ങലകളും തമ്മിൽ നിരവധി ശക്തികുറഞ്ഞ ഹൈഡ്രജൻ ബന്ധകങ്ങളാൽ ബന്ധിപ്പിക്കപ്പെട്ടിരിക്കുന്നു. ഈ ബന്ധകങ്ങൾ പൂരക ബേസുകൾക്കിടയിലായിട്ടാണ് രൂപമെടുക്കുന്നത്. അഡിനിൻ – തൈമിൻ, ഗുവാനിൻ – സൈറ്റോസിൻ എന്നിവയാണ് പൂരകബേസുകളായി വർത്തിക്കുന്നത്.

ഇരട്ടപ്പിരി രൂപമാണ് ഡി എൻ എയ്ക്ക് ഉള്ളതെന്ന് ആദ്യമായി ചൂണ്ടിക്കാട്ടിയത് 1953-ൽ ജെ. വാട്ട്സൺ, എഫ്. ക്രിക് എന്നീ ശാസ്ത്രകാരന്മാരാണ്. ഇവരുടെ പരീക്ഷണങ്ങൾ ഈ വലംകയ്യൻ ഇരട്ട ഹെലിക്സിന്റെ ഓരോ ചുറ്റലിലും ഏതാണ്ട് പത്ത് ആധാരയുഗ്മങ്ങൾ (base pairs) വീതം ഉണ്ടെന്നും തെളിയിക്കുകയുണ്ടായി. പഞ്ചസാരയും ഫോസ്ഫേറ്റുകളും ചേർന്ന കൈവരിയും അതിനടിയിലായി ക്ഷാരതന്മാത്രകളുടെ ചവിട്ടടികളും ഉള്ള ഒരു പിരിയൻ ഗോവണിയുടെ ഘടനയാണ് വാട്ട്സണും ക്രിക്കും ഡി എൻ എയ്ക്കു കണ്ടെത്തിയത്.

ഡി എൻ എയ്ക്ക് രണ്ടു ബേസുകൾക്കും ഇടയിലായി നേരത്തേ സൂചിപ്പിച്ച തരത്തിൽ തന്നെയുള്ള ഹൈഡ്രജൻ ബന്ധകങ്ങളോടു കൂടിത്തന്നെ ഒരു ഇടംകയ്യൻ ഇരട്ട ഹെലിക്സിന്റെ രൂപവും ആകാമെന്ന് 1979-ൽ കണ്ടുപിടിക്കപ്പെട്ടു. ദൈർഘ്യം കുറഞ്ഞ ഡി എൻ എ തുണ്ടുകളിലെ പരലുകളുടെ ഘടന കണ്ടെത്തിയതിലൂടെയാണ് ഡി എൻ എയുടെ ഈ പുതിയ രൂപം മനസ്സിലാക്കപ്പെട്ടത്.

ഡി എൻ എയുടെ ഘടനയുടെ ഏതാണ്ടൊരു പൂർണരൂപം നൽകുന്നതിൽ വാട്സണും ക്രിക്കുമാണ് വിജയിച്ചതെങ്കിലും ഈ രംഗത്തെ ഗവേഷണങ്ങളിലൂടെ ഭാഗിക വിജയം നേടിയ ഒരു പറ്റം ശാസ്ത്രകാരന്മാർ കൂടിയുണ്ട്. റോസലിൻഡ് ഫ്രാങ്ക്ളിൻ, മോറിസ് വിൽകിൻസ്, റെയ്മണ്ട് ഗോസ്ലിങ്, ലീനസ് പോളിങ്, അലക്സ് സ്ട്രോക്സ്, ബർട്ടിൽ ജേക്കബ്സൺ എന്നിവരുടെ സംഭാവനകൾ വിലപ്പെട്ടവയാണ്. ഡി എൻ എയുടെ ഘടന കണ്ടെത്തുന്ന ശ്രമങ്ങൾക്ക് വേഗം കൂട്ടിയത് റോസലിൻഡ് ഫ്രാങ്ക്ളിന്റെ ചില പഠനഫലങ്ങളായിരുന്നു. ഈ പഠനങ്ങൾ വെളിവാക്കിയ എക്സ്-റേ വിഭംഗന ചിത്രങ്ങളാണ് ഡി എൻ എയുടെ പിരിയൻ ഗോവണി ആകൃതിയെപ്പറ്റി ഫ്രാൻസിസ് ക്രിക്കിന്റെ മനസ്സിൽ ആദ്യമായി ആശയം ജനിപ്പിച്ചത്.

പ്രവർത്തന ലക്ഷ്യങ്ങൾ
ഡി എൻ എയ്ക്ക് പുനരാവർത്തനം (replication), പകർപ്പെടുക്കൽ (transcription) എന്നീ രണ്ട് പ്രധാന കർമങ്ങളാണുള്ളത്. ഡി എൻ എ വഹിക്കുന്ന വിവരങ്ങൾ തന്മാത്രയ്ക്കുള്ളിലെ പ്യൂരിൻ, പിരിമിഡിൻ ബേസുകളുടെ അനുക്രമത്തിൽ കോഡുചെയ്യപ്പെട്ട നിലയിലാണുള്ളത്. ഓരോ മാതൃ ഡി എൻ എ തന്മാത്രയുടെയും യഥാർഥവും കണിശവുമായ രണ്ട് കോപ്പികൾ ഉണ്ടാക്കിയെടുക്കുന്നതിലൂടെയാണ് ഡി എൻ എ ഉൾക്കൊള്ളുന്ന വിവരങ്ങളുടെ ശാശ്വതീകരണം നടക്കുന്നത്. ഇതാണ് പുനരാവർത്തനം എന്നറിയപ്പെടുന്നത്. ഈ വിവരങ്ങളിൽ ഒട്ടുമുക്കാലും പ്രോട്ടീനിന്റെയോ പ്രോട്ടീൻ പ്രവർത്തനം വഴി ലഭ്യമാവുന്ന ഉത്പന്നങ്ങളുടെയോ രൂപത്തിലാണ് വ്യഞ്ജിപ്പിക്കാറുള്ളത്. വിവിധ ഘട്ടങ്ങളിലൂടെയാണ് ഈ വ്യഞ്ജിപ്പിക്കൽ പ്രക്രിയ പൂർത്തിയാകുന്നത്.

ഡി എൻ എ ഉൾക്കൊള്ളുന്ന വിവരങ്ങൾ ന്യൂക്ലിയോറ്റൈഡ് അനുക്രമത്തിലാണ് കോഡു ചെയ്യപ്പെട്ടിരിക്കുന്നത് എന്നതിനാൽ ഡി എൻ എയുടെ കർമത്തെ നിർവചിക്കുന്ന കാര്യത്തിൽ ന്യൂക്ലിയോറ്റൈഡ് അനുക്രമത്തിന്റെ നിർധാരണം (determination) വളരെ പ്രാധാന്യമർഹിക്കുന്നു. ഡി എൻ എ തന്മാത്രയുടെ പരിമാണ പ്രത്യേകതമൂലം ആദ്യകാലത്ത് ഈ നിർധാരണ പ്രക്രിയ വളരെ ക്ലേശകരമായിരുന്നു. ഇന്ന് ഈ രംഗത്ത് കൃത്യതയുള്ള നിരവധി നൂതനമാർഗങ്ങൾ ആവിഷ്ക്കരിക്കപ്പെട്ടിട്ടുണ്ട്.

*പുനരാവർത്തനം*

ഡി എൻ എയുടെ ഇരട്ട പിരിയിലുള്ള രൂപം തന്നെ പുനരാവർത്തന ക്രിയാവിധികളെ സൂചിപ്പിക്കുന്നുണ്ട്. ഇതിന്റെ രണ്ട് ഇഴകൾക്കും പരസ്പരപൂരകങ്ങളായ ബേസ് അനുക്രമങ്ങളാണുള്ളത്. അഡിനിൻ യുഗ്മങ്ങൾക്ക് തൈമീനുമായും ഗുവാനിൻ യുഗ്മങ്ങൾക്ക് സൈറ്റോസീനുമായും പരസ്പരപൂരക ബേസ് അനുക്രമം കണ്ടുവരുന്നു. ഡി എൻ എ തന്മാത്രയുടെ ഏതെങ്കിലും ഒരു ഇഴയുടെ ബേസ് അനുക്രമവും മൊത്തം തന്മാത്രയുടെ ഘടന വെളിവാക്കുന്നു. ഒരു ചെറിയ അകലത്തിൽ പൂരക ഇഴകളെ വേർപെടുത്തുക എന്ന കൃത്യമാണ് പുനരാവർത്തന ക്രിയാവിധിയിലുള്ളത്. ഇതേത്തുടർന്ന് മാതൃ ഇഴകളിൽ ഓരോന്നിലുമുള്ള പൂരക ഇഴകളുടെ സംശ്ലേഷണവും സംഭവിക്കുന്നു. ഈ പ്രക്രിയകളിൽ തെറ്റുകൾ കടന്നുകൂടുന്നത് വളരെ അപൂർവമാണ്. എങ്കിലും എപ്പോഴെങ്കിലും ഒരു തെറ്റു കടന്നുകൂടിയാൽ അത് തിരുത്തപ്പെട്ടില്ലെങ്കിൽ അപകടവുമാണ്. ഇത്തരം തെറ്റുമൂലം വ്യത്യസ്തമാക്കപ്പെടുന്ന തന്മാത്രയിൽ നിന്നും ഉരുത്തിരിഞ്ഞുണ്ടാവുന്ന എല്ലാ ഡി എൻ എ സന്തതികളിലും ഈ പിഴവ് ശാശ്വതീകരിക്കപ്പെടുകയും ചെയ്യും. ഈ പ്രത്യേക ഡി എൻ എ തന്മാത്രയ്ക്കു വേണ്ടി കോഡു ചെയ്യപ്പെട്ട പ്രോട്ടീൻ അനുക്രമത്തെ ഈ മാറ്റം തകിടം മറിക്കുന്നു. ഇതുമൂലം പ്രോട്ടീൻ പ്രവർത്തനം തന്നെ നിലയ്ക്കുകയോ വ്യത്യസ്തമാവുകയോ ചെയ്യുന്നു. ഡി എൻ എയുടെ ബേസ് അനുക്രമത്തിലുണ്ടാവുന്ന വ്യതിയാനം വഴിയാണ് ഉത്പരിവർത്തനം (mutation) സംഭവിക്കാറുള്ളത്.

*പകർപ്പെടുക്കൽ*

പകർപ്പെടുക്കൽ പ്രക്രിയയുടെ അടിസ്ഥാന ക്രിയാവിധി ബേസ് യുഗ്മന (pairing)ത്തിൽ അധിഷ്ഠിതമാണ്. ഔപചാരികാർഥ കല്പനയിൽ ഇത് പുനരാവർത്തന പ്രക്രിയയ്ക്ക് സമാനമാണെന്നു പറയാം. ഇവിടെ ഡി എൻ എയുടെ ഒരു ഇഴയുടെ പകർപ്പെടുക്കൽ മാത്രമേ നടക്കുന്നുള്ളൂ എന്ന വ്യത്യാസമേയുള്ളു. ഡിഓക്സിറൈബോസിനു പകരം റൈബോസ് ഉൾക്കൊള്ളുന്നു എന്നതാണ് ഡി എൻ എയിൽ നിന്നും ആർ എൻ എയ്ക്കുള്ള വ്യത്യാസം. അതോടൊപ്പം രണ്ട് പിരിമിഡിൻ ബേസുകളിൽ ഒന്നായി തൈമീനെ യുറാസിൽ പ്രതിസ്ഥാപിക്കുന്നു എന്നതും മറ്റൊരു വ്യത്യാസമാണ്. രണ്ടാമത്തെ വ്യത്യാസം ബേസ് യുഗ്മത്തിന്റെ അടിസ്ഥാന പ്രതിരൂപത്തിൽ അഡിനിൻ യുറാസിലുമായി യുഗ്മനവിധേയമാകുന്നു എന്നതൊഴിച്ച് മറ്റൊരു വ്യതിയാനവും വരുത്തുന്നില്ല.

ഡി എൻ എ വിഭിന്നത
വിവിധ ജീവജാലങ്ങൾ അവയുടെ ഡി എൻ എയുടെ ഘടനയിലും അളവിലും വൈവിധ്യം പുലർത്തുന്നു. ബാക്ടീരിയകളിൽ ഗുവാനിൻ – സൈറ്റോസിൻ ശതമാനം 25 മുതൽ 75 വരെ വ്യത്യാസപ്പെടാറുണ്ട്. പരിണാമപരമായി ഉയർന്ന സസ്യങ്ങളിൽ ഈ വ്യതിയാനം 35 മുതൽ 50 ശ.മാ. വരെ മാത്രമാണ്.

പൊതുവായി പറഞ്ഞാൽ ജീവജാലത്തിന്റെ സങ്കീർണത കൂടുന്നതിന് ആനുപാതികമായി അവയുടെ ഓരോ കോശത്തിലുമുള്ള ഡി എൻ എയുടെ അളവും വർധിച്ചുവരുന്നു. എന്നാൽ ബന്ധുത്വമുള്ള ജീവി സംഘങ്ങൾ തമ്മിൽ കൂടിയതോതിലുള്ള വ്യതിയാനങ്ങളാണ് കണ്ടുവരുന്നത്. വൈറസുകളിൽ ഓരോ കണ (particle)ത്തിലും 6 X 10-19 ഗ്രാം എന്ന കുറഞ്ഞ നിരക്കിലുള്ള ഡി എൻ എ മാത്രമാണുള്ളത്. എന്നാൽ സസ്യകോശങ്ങളിൽ അഗുണിത കോശങ്ങളിലെ ഡി എൻ എ അളവ് 2 X 10-10 വരെയാണ്. ചെറിയ വൈറസുകളിലും ബാക്ടീരിയകളിലും പോളിപെപ്റ്റൈഡുകൾക്കുവേണ്ടിയാണ് ഡി എൻ എ കോഡു ചെയ്യപ്പെട്ടിരിക്കുന്നത്. ഇവയിൽ ഓരോ അനുക്രമവും ഒരു പ്രാവശ്യം മാത്രമേ പ്രതിനിധാനം ചെയ്യപ്പെടുന്നുള്ളു. എന്നാൽ പരിണാമപരമായി ഉയർന്ന ജീവജാലങ്ങളിൽ മിക്ക അനുക്രമങ്ങളും 102 മുതൽ 107 ആവർത്തികൾ വരെ ആവർത്തിക്കപ്പെടാറുണ്ട്. അതുപോലെതന്നെ അധികം ഡി എൻ എയും പോളിപെപ്റ്റൈഡുകളായിട്ടല്ല വ്യഞ്ജിക്കപ്പെട്ടിട്ടുള്ളത്. ഉയർന്ന സസ്യവർഗത്തിലെ ഒരു വിഭാഗത്തിനുള്ളിൽ തന്നെ ഓരോ കോശത്തിലെയും ഡി എൻ എയുടെ അളവ് നൂറിരട്ടി വരെ വ്യത്യസ്തമാവാറുണ്ട്. ശ്വാസകോശ മത്സ്യങ്ങളിൽ മറ്റ് മത്സ്യയിനങ്ങളിലുള്ളതിനേക്കാൾ നൂറിരട്ടി ഡി എൻ എ കാണപ്പെടുന്നു. ഒരു ജീനസ്സിലും സ്പീഷീസിലും ഉള്ള ജീവികൾക്കിടയിൽപ്പോലും ഓരോ കോശത്തിലെയും ഡി എൻ എയുടെ അളവിൽ പ്രകടമായ വ്യതിയാനം ദർശിക്കാനാവും. ഈ വ്യതിയാനങ്ങളുടെ കാരണങ്ങളെപ്പറ്റി വ്യക്തമായ അറിവ് ഇതുവരെ ലഭ്യമായിട്ടുമില്ല.

കോശകേന്ദ്രത്തിലെ ക്രോമസോമുകളിലടങ്ങിയിട്ടുള്ള ഡി എൻ എ കൂടാതെ മറ്റ് ഡിഎൻഎ തന്മാത്രകളെക്കൂടി ധാരാളം കോശങ്ങൾ ഉൾക്കൊള്ളാറുണ്ട്. ബാക്ടീരിയകളിൽ പ്ലാസ്മിഡുകളിലാണ് ഡി എൻ എ കാണപ്പെടുന്നത്. ഇവയിൽ ഉർവരത (fertility), ഔഷധങ്ങൾ ആന്റിബയോട്ടിക്കുകൾ എന്നിവയ്ക്കെതിരെയുള്ള പ്രതിരോധം എന്നിവയ്ക്കായുള്ള ജീനുകൾ പ്ലാസ്മിഡുകളിലാണ് കാണപ്പെടുന്നതെന്നും പ്രത്യേകം ശ്രദ്ധേയമാണ്. ഈ പ്ലാസ്മിഡുകൾ സ്വയം പുനരാവർത്തന വിധേയമാവാറുണ്ട്. ചില ഘട്ടങ്ങളിൽ ഇവ ക്രോമസോമിൽ ലയിച്ചു ചേരുന്നതായും കണ്ടുവരുന്നു. പ്ലാസ്മിഡ് ഡി എൻ എകളുടെ വലിപ്പക്കുറവ് അവയുടെ ഘടനയുടെ വിശദപഠനത്തിന് സഹായകവുമാണ്.

പരിണാമപരമായി ഉയർന്ന ജന്തുക്കളിൽ മൈറ്റോകോൺഡ്രിയ, ക്ലോറോപ്ലാസ്റ്റ് കോശാംഗങ്ങളിലും അവയുടെ തനതായ ഡി എൻ എ കാണപ്പെടുന്നു. അതിപുരാതനകാലത്തെ ഈ ജന്തുക്കളുടെ പരിണാമപരമായ വ്യുൽപ്പത്തിയെപ്പറ്റിയുള്ള സൂചനകൾ ഇതിലൂടെ ലഭ്യമാണെന്ന് ശാസ്ത്രകാരന്മാർ അഭിപ്രായപ്പെടുന്നു. ഇത്തരം ഡി എൻ എകളുടെ പുനരാവർത്തനം കോശകേന്ദ്രത്തിന്റെ നിയന്ത്രണങ്ങൾക്കു വിധേയമായിട്ടാണ് നടക്കുന്നതെങ്കിലും ഇവ പ്രത്യേകം പുനരാവർത്തക ഘടകങ്ങളായിട്ടാണ് വർത്തിക്കാറുള്ളത്.

*ആധുനിക കണ്ടെത്തലുകൾ*

1953 ഏ. 25-ന് പ്രസിദ്ധീകൃതമായ നേച്ചർ എന്ന ഗവേഷണമാസികയുടെ 171-ാം വാല്യത്തിലായിരുന്നു ജയിംസ് വാട്സണും ഫ്രാൻസിസ് ക്രിക്കും ഡി എൻ എ യുടെ ഘടനയെപ്പറ്റിയുള്ള പുത്തനറിവുകൾ നിരത്തിവച്ചത്. കൃത്യം അരനൂറ്റാണ്ട് പിന്നിട്ടപ്പോൾ (2003 ഏ. 17) ഡി എൻ എ തന്മാത്രാ ഘടനയുടെ വിപ്ലവകരങ്ങളായ അറിവുകളും ലോകത്തിനു ലഭ്യമായി. അമേരിക്ക ഉൾപ്പെടെയുള്ള അഞ്ചു രാജ്യങ്ങളുടെ നേതൃത്വത്തിൽ നടന്നുവന്ന ഗവേഷണങ്ങൾക്കൊടുവിൽ മനുഷ്യശരീരത്തിന്റെ ജനിതക രഹസ്യം കണ്ടെത്തുന്ന ദൗത്യം 99.99 ശതമാനവും വിജയിച്ചതായി രാജ്യാന്തര ജനിതക ഗവേഷണ സംഘടന വെളിപ്പെടുത്തി.

മനുഷ്യ ശരീരത്തിൽ ഏതാണ്ട് മുപ്പത്തി അയ്യായിരം ജീനുകൾ ഉണ്ടെന്നാണ് കണ്ടെത്തിയിരിക്കുന്നത്. ഇതിന്റെ സംഖ്യ എലിയിൽ 30000 മുതൽ 45000 വരെയും പുഴുക്കളിൽ 19000 ആണെന്നും ഓർക്കണം. ഇതിന്റെ അർഥം ജീനുകളുടെ സംഖ്യയുടെ കാര്യത്തിൽ മനുഷ്യൻ മറ്റു ജീവികളേക്കാൾ അത്ര ഉയരത്തിലൊന്നുമല്ലെന്നു തന്നെയാണ്. ക്രോമസോമുകളിലെ ഡി എൻ എയുടെ കാര്യത്തിൽ മനുഷ്യനും ചിമ്പാൻസിയും തമ്മിൽ 98% സാമ്യമുണ്ടെന്നും കണ്ടെത്തപ്പെട്ടിട്ടുണ്ട്.

ഡി എൻ എയുടെ ഘടനയും അതുവഴി മനുഷ്യന്റെ ജനിതക രഹസ്യവും കണ്ടെത്തുന്നതിൽ ബയോമെഡിക്കൽ ഇൻസ്ട്രുമെന്റേഷനും ബയോ ഇൻഫർമാറ്റിക്സും സാരമായ പങ്കുവഹിച്ചിട്ടുണ്ട്. ജനിതക ഗവേഷണത്തിനുള്ള യന്ത്രോപകരണങ്ങൾക്കായാണ് ബയോമെഡിക്കൽ ഇൻസ്ട്രുമെന്റേഷൻ എന്ന ശാസ്ത്രശാഖ രൂപപ്പെട്ടത്. ജനിതക ഗവേഷണത്തിൽ കമ്പ്യൂട്ടറുകളുടേയും സൂപ്പർ കമ്പ്യൂട്ടറുകളുടേയും ഉപയോഗം ബയോ ഇൻഫർമാറ്റിക്സ് എന്ന ശാസ്ത്രശാഖയ്ക്കും രൂപം നൽകി. ഈ രണ്ടു ശാസ്ത്രശാഖകളിൽ കഴിഞ്ഞ ഏതാനും വർഷങ്ങളായി നടന്നുവന്ന പഠനങ്ങളാണ് മനുഷ്യരുടെ ജനിതക രഹസ്യം വെളിവാക്കുന്നതിൽ വിജയം കൈവരിച്ചിരിക്കുന്നത്.

ജീനുകളിലടങ്ങിയിരിക്കുന്ന ഡി എൻ എയുടെ ഘടനയുടെ ഏതാണ്ടൊരു പൂർണരൂപം കണ്ടെത്തിയതിലൂടെ മനുഷ്യന്റെ ജനിതക ഘടനയും പൂർണമായും വെളിവാക്കപ്പെടുന്നു. ഒരു വ്യക്തി ആരെന്നോ അയാളുടെ പ്രവർത്തനങ്ങൾ എന്തെന്നോ അറിയാതെ, അയാളെക്കുറിച്ചുള്ള സർവവിവരങ്ങളും ഭാവിയിൽ അയാൾക്ക് എന്തൊക്കെ അസുഖങ്ങൾ വരാനുള്ള സാധ്യതകളുണ്ടെന്നും വരെ അയാളുടെ ജനിതക ഘടന പഠിച്ച് പ്രവചിക്കാനാവും. ഒരു വ്യക്തിയുടെ വ്യതിരിക്ത ജനിതക ഘടന ഒരു തുള്ളി രക്തത്തിലൂടെ തിരിച്ചറിയാനാകും എന്നത് ഈ രംഗത്തുണ്ടായ വിപ്ലവകരമായ ഒരു മുന്നേറ്റമാണ്. ഭാവിയിൽ രോഗം ഉണ്ടാക്കാൻ സാധ്യതയുള്ള ജീനുകളെ തിരിച്ചറിയാനും ഇപ്പോൾ പ്രവർത്തന രഹിതമായിരിക്കുന്ന അപകട ജീനുകൾ ഏതു സാഹചര്യത്തിൽ പ്രവർത്തന നിരതമാകുമെന്നു കണ്ടെത്താനും കഴിയും. ഓരോ വ്യക്തിയുടെയും ശരീരത്തിന്റെ ജനിതക ഘടന തയ്യാറാക്കുന്നതോടെ ഏത് ഡി എൻ എ ജോടിയാണ് ക്രമരഹിതമായി പ്രവർത്തിക്കുന്നതെന്നു മനസ്സിലാക്കാം. ഇതോടെ കാൻസർ, എയ്ഡ്സ്, പ്രമേഹം തുടങ്ങി മനുഷ്യരാശിയെ നേരിടുന്ന ഏതു പ്രശ്നത്തിനും പരിഹാരം കണ്ടെത്തുവാൻ വൈദ്യശാസ്ത്രത്തിനു കഴിയും.

ആധുനിക പഠനങ്ങളിലൂടെ മനുഷ്യന്റെ ജനിതക ഘടന കണ്ടുപിടിച്ചതുകൊണ്ട് അത്ഭുതാവഹമായ പ്രയോജനങ്ങളാണ് മനുഷ്യനു ലഭ്യമാകാൻ പോകുന്നത്. രോഗങ്ങളുടെ കൃത്യമായ നിർണയം, ഭാവിയിലെ രോഗസാധ്യതയെപ്പറ്റിയുള്ള പ്രവചനം, മനുഷ്യശരീരഘടനയ്ക്ക് ഇണങ്ങുന്ന ഔഷധങ്ങളുടെ രൂപകല്പന, ജനിതക നിയന്ത്രണങ്ങളിലൂടെയുള്ള രോഗചികിത്സ, ശരീരത്തിനു യോജിച്ച ഔഷധ അളവിന്റെ കണ്ടെത്തൽ, അവയവമാറ്റ ശസ്ത്രക്രിയകളിൽ നടത്താനാവുന്ന കൃത്യ ‘മാച്ചിംഗ്’ അഥവാ ചേർച്ച എന്നിവ ഈ പ്രയോജനങ്ങളിൽ ചിലതു മാത്രമാണ്. കുറ്റാന്വേഷണ രംഗത്തിനും ഈ ജനിതക മാപ്പിംഗ് നിരവധി സംഭാവനകൾ നൽകുന്നുണ്ട്. കുറ്റകൃത്യം നടന്ന സ്ഥലത്തുനിന്നു ലഭ്യമാവുന്ന മുടി, രക്തം, ഉമിനീർ എന്നിവയിൽ നിന്നും കുറ്റകൃത്യം ചെയ്ത വ്യക്തിയുടെ യഥാർഥ ജനിതക ഘടന കണ്ടെത്തി ആ പ്രത്യേക വ്യക്തിയെ കണ്ടെത്താനാവും. ജനിതക ദൗർബല്യങ്ങളിലൂടെ രോഗപ്രതിരോധശേഷി നശിച്ച് അന്യം നിൽക്കാൻ പോകുന്ന ജീവി വർഗങ്ങളെ കണ്ടെത്താനും ഈ ജനിതക മാപ്പിംഗ് സൌകര്യമൊരുക്കുന്നു. പരിസര മലിനീകരണം നടത്തുന്ന ബാക്ടീരിയകളേയും മറ്റു സൂക്ഷ്മജീവികളേയും വേർതിരിച്ചറിയാനും അവയെ നശിപ്പിക്കാനുള്ള സംവിധാനം ഒരുക്കാനും ജനിതക മാപ്പിംഗിലൂടെ സാധ്യമാകുന്നതാണ്.

You might also like

Leave A Reply

Your email address will not be published.